
Using JConsole to Monitor Your IBM Notes Client
by Julian Robichaux, panagenda
originally published on socialbizug.org, May 2014

Beginning with Java 5.0, Oracle added a monitoring app called JConsole (http://
docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html) to their JDK
distributions. This app shows you not only how memory, threads, and CPU are being used in
real-time by a Java application, it also taps into the JMX MBeans (http://docs.oracle.com/
javase/1.5.0/docs/api/javax/management/package-summary.html) that have been registered
with the Java VM. This article will discuss how to connect JConsole to your IBM Notes client.

Step 1: Download and Install a Recent Java JDK
You’ve probably already got one, but just in case, make sure that you have a Java JDK (5.0 or
higher) installed on your machine. If you’re not sure if you have the JDK or not, just go to the
“bin” folder of your current Java install and look for the jconsole.exe program. If it’s not there,
you probably only have a JRE.

The screenshots in this article are Java 6.0 running on Windows 7.

Step 2: Edit your jvm.properties file
Open the {Notes}/framework/rcp/deploy/jvm.properties file in a text editor and add the following
lines:

vmarg.Djmxremoteport=-Dcom.sun.management.jmxremote.port=8123
vmarg.Djmxremotessl=-Dcom.sun.management.jmxremote.ssl=false
vmarg.Djmxremoteauth=-Dcom.sun.management.jmxremote.authenticate=false

The first line tells the Notes client JVM to listen on port 8123 for JMX clients like JConsole (feel
free to use a different port if you’d like). The second line tells it not to use SSL for the connection
(which it would do by default). And the third line tells it not to require a username and password
for the connection.

You can also leave yourself comments in the jvm.properties file so you can remember what all
this stuff means, by prefixing the comment lines with a hash (#) like this:

http://socialbizug.org
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/package-summary.html

Save and close the file, then start your Notes client. You might receive a firewall warning like
this:

If so, just click “Allow access” and continue. This is the Notes JVM attempting to listen for the
JConsole connection.

Step 3: Connect with JConsole
Open a command prompt. If your Java JDK “bin” directory is on the path, you can simply type
“jconsole” to launch the program. Otherwise you will need to navigate to the JDK “bin” directory
first, and then type “jconsole”. You will see a window like this:

To connect to your Notes client, choose the “Remote Process” option and use an address of
“localhost:8123” in the remote process field (8123 is the port we used in the jvm.properties file
earlier). Because we set authenticate=false, no username or password is required. Just click the
“Connect” button.

You should now see the full JConsole interface. It will look something like this:

The graphs on the Overview tab will tick along at a regular interval (default is every 4 seconds,
although you can change it with a command line argument http://docs.oracle.com/javase/6/
docs/technotes/tools/share/jconsole.html), showing changes in heap memory, total threads,
and total classes loaded.

You will notice that the CPU graph remains at zero. Mine does anyway. I suspect that the
problem is related to APAR IV19214 (http://www-01.ibm.com/support/docview.wss?
uid=swg1IV19214) and will be (or has been) fixed in a newer version of IBM Java. If the
problem is something else or you know a way to fix it, please leave a note in the comments.

Checking Memory Usage
Okay, great, we’re using JConsole. What can we use it for?

First of all, keep in mind that this is only tapping in to the Eclipse part(s) of the IBM Notes client.

Not the “classic” Notes operations, not LotusScript, and not Java agents. Just the Eclipse/
Expeditor wrapper and any plugins you have installed.

http://docs.oracle.com/javase/6/docs/technotes/tools/share/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jconsole.html
http://www-01.ibm.com/support/docview.wss?uid=swg1IV19214
http://www-01.ibm.com/support/docview.wss?uid=swg1IV19214

That being said, the most obvious use of JConsole is for monitoring the memory use of your
Notes client, and the Domino Designer (DDE) client. Ideally you want a kind of sawtooth graph
of memory, like this:

This will show memory being used and released on a regular basis, and the “Memory” tab will
also keep track of how close you are to the maximum amount of memory allotted to your client.
The Memory tab also has a button to force garbage collection, although that’s not something
you’ll ever really need to do.

If you want to see some of the interesting memory tricks you can play with JConsole, like turning
on verbose garbage collection or checking object finalization information, please read the
excellent article “Using JConsole to Monitor Applications” (http://www.oracle.com/technetwork/
articles/java/jconsole-1564139.html).

Adjusting Log Levels
Another thing that JConsole allows you to do easily is change the logging levels of plugins that
are currently running in the client (any levels you set will be reset when the client is restarted).
You can then see the log messages in the trace log of the Notes client from the menu option
Help > Support > View Trace.

To set a logger level, go to the “MBeans” tab and navigate to the java.util.logging Logging
Operations item:

http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html

Next to the “setLoggerLevel” button, enter the name of your logger in the first field and the level
(like “FINE”) in the second field, then click the setLoggerLevel button. If you choose a logger
that doesn’t exist — either because you typed the name wrong or because the corresponding
plugin hasn’t been activated yet — you will get an error message.

Securing Access
When we set this up, we explicitly turned authentication off, which might have set off a few
alarm bells. The JMX listener will only accept connections from localhost by default, which gives
you some measure of security. If you decide that you want to require authentication, you also
need a {Notes}/jvm/lib/management/jmxremote.password file, which MUST have OS-level read/
write restrictions. For information on how to set this up, please read the information in these two
links:

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdeup
http://docs.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html

There are a lot of other options (and comments on what the options mean) in the {Notes}//lib/
management/management.properties file. The Oracle documentation also contains a lot of
details on configuration and use at: http://docs.oracle.com/javase/6/docs/technotes/guides/
management/jconsole.html

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdeup
http://docs.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

